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Abstract—The Indian electricity sector, despite having the
world’s fifth largest installed capacity, suffers from a 12.9%
peaking shortage. This shortage could be alleviated, if a large
number of deferrable loads, particularly the high powered ones,
could be moved from on-peak to off-peak times. However,
conventional Demand Side Management (DSM) strategies may
not be suitable for India as the local conditions usually favor in-
expensive solutions with minimal dependence on the pre-existing
infrastructure. In this work, we present a completely autonomous
DSM controller called the nPlug'. nPlug is positioned between
the wall socket and deferrable load(s) such as water heaters,
washing machines, and electric vehicles. nPlugs combine local
sensing and analytics to infer peak periods as well as supply-
demand imbalance conditions. They schedule attached appliances
in a decentralized manner to alleviate peaks whenever possible
without violating the requirements of consumers. nPlugs do
not require any manual intervention by the end consumer nor
any communication infrastructure nor any enhancements to the
appliances or the power grids. Some of nPlug’s capabilities are
demonstrated using experiments on a combination of synthetic
and real data collected from plug-level energy monitors.

Our results indicate that nPlug can be an effective and
inexpensive technology to address the peaking shortage. This
technology could potentially be integrated into millions of future
deferrable loads: appliances, electric vehicle (EV) chargers, heat
pumps, water heaters, etc.

Index Terms—Smart Plug, Demand Response, Peak Loads,
Scheduling, Multiple Access

I. INTRODUCTION

S OF NOVEMBER 2011, the Indian electricity sector,
despite having the world’s fifth largest installed capacity
of 185.5 GW, suffers from a 12.9% peaking shortage and
10.3% energy shortage [2]. The situation could worsen with
the current trends in population and income growth, industrial-
ization, and urbanization. Electricity consumption is expected
to increase substantially in the coming decades as well [3].
Considering that electricity cannot easily be stored in large
scale, peak shortage can be alleviated by increasing supply
or by reducing demand. Supply can be increased through
the use of “peaker” power plants that operate on fast-starting
fuels. Peaker plants operate only during the peak, for a small
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fraction of time, so their electricity is inherently expensive. It
is estimated that if India were to add peakers to the existing
generation portfolio, the average supply cost might increase
by over 35% [4].

Clearly, there is a significant role and potential for
demand side management (DSM) programmes in India. The
Government of India, through new Energy Conservation
legislation, is also seeking to implement a host of such
programmes within the country [5]. However, conventional
DSM strategies may not be suitable for India as the local
conditions usually favor only inexpensive solutions with
minimal dependence on the pre-existing infrastructure [6].
To address this need, we developed an autonomous DSM
system based on smart plugs called nPlugs [1] that “sit”
between deferrable loads and wall sockets. An nPlug senses
line voltage and frequency to infer the load level and supply-
demand imbalance in the grid respectively. It processes the
sensed data using resource-efficient data mining algorithms to
identify the peak/off-peak periods and imbalance conditions
of the power grid. It runs the attached load(s) during
user-specified time intervals while avoiding unfavorable grid
conditions (peak load hours and supply-demand imbalance
conditions) as much as possible. As a result, each nPlug runs
a decentralized load rescheduling algorithm that contributes
to peak load reduction by distributing the loads over time.
The benefits of our approach are:

Network free - Since nPlugs don’t require any network
infrastructure for sensing or control, they can be completely
autonomous. This makes nPlugs particularly appropriate
for locations where communication infrastructure 1is
underdeveloped. For instance, in India, as there is spectrum
crunch to serve the data/voice communication needs of
humans, there may not be sufficient bandwidth to support
machine-to-machine communications that would be required
by centralized DSM solutions. Even wired networks may not
be widely applicable as only 11.3% of Indian households
have access to Internet [7].

Location-specific load management - nPlugs sense the
line voltage to determine whether the incoming feeder is
congested or not. As the line voltage reflects the load on
the local transformer and load on the grid that feeds that
transformer, nPlugs can alleviate the local load levels even if
the overall grid is not congested. It is important to note that
the gains from decentralized demand reduction could add up
and alleviate grid-level load issues as well.

Brownfield innovation - nPlugs don’t require any changes to
the grid or to the appliances that they manage. This approach
is particularly suitable for a mature system like the power
grid and for the millions of appliances already in use.
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Fig. 1. A two-bus power system

Incremental adoption - since each nPlug has the potential to
alleviate peak load, nPlugs can be introduced in small batches
into the grid. This reduces the initial investment as well as
the risks of introducing new technology into a pre-existing
infrastructure.

No policy changes required - Since nPlugs don’t depend on
differential pricing schemes or smart meters, deploying them
doesn’t require any regulatory approvals. Any customer who
is willing to contribute to peak load reduction can do so by
simply plugging a deferrable load into an nPlug.
Inexpensive solution - every hardware and software
component in nPlugs are based on careful analysis of
cost-performance trade-offs. The prototype we have built
costs about USD 30 in small volumes (< 100 units) and we
estimate nPlugs in large volumes (> 100,000 units) would
cost about USD 15.

The rest of the paper is organized as follows. Section II
presents the power systems basis for inferring grid load and
supply-demand imbalance by sensing line voltage and fre-
quency. The details of nPlug hardware design is described in
Section III. The data mining algorithms used to identify peak
and off-peak periods as well as load scheduling algorithms
are presented in section IV. Experimental evaluation of our
algorithms is presented in Section V. Section VI presents re-
lated work and finally section VII concludes with a discussion
about future work.

II. POWER SYSTEMS BACKGROUND

This section uses the power systems theory to explain

why the line voltage and frequency measured at a consumer
premise can serve as good indicators of grid load and supply-
demand imbalance respectively.
Inferring grid load from voltage. Figure 1 shows a simple
“power distribution system” wherein a load is connected to a
source through a transformer. Eg is the source voltage, Vr
is the load voltage, Z N is the transformer impedance, and
Zrp is the load impedance (all quantities are vectors). We
will now see how the magnitude of load voltage Vy decreases
with increasing load.

The current flowing through the line and load, Iis given
by I= ZEi” where Zpn = ZinZ0 = Zpncosh +

LN+ZLD
jZLst'nH and ZLD = ZLpl(b = ZLDCOS(b"-jZLDSZ'TL(b.

Here 6 is phase angle between reactive and resistive compo-
nents of the transformer impedance while ¢ is the phase angle
between the load current and voltage. Now the magnitude of
current I is given by

Es
\/(ZLNCOSH + Zrpcosd)? + (Zrnsinb + Zrpsing)?

I =
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Fig. 2. (top): Load-voltage characteristics of a distribution system, (bottom):
Load-frequency control characteristics

Therefore the magnitude of load voltage Vi is:

VeR=Z2Zrp x1I ()

Since the source voltage Fg and transformer impedance
ZrNZ0 are generally constant, the load voltage Vg is es-
sentially a function of the magnitude of load impedance
Zr,p and the power factor cos ¢. To minimize reactive power
consumption, appliances are usually designed to have high
power factor (0.9 to 1). Thus from Eq.(1) we see that the load
voltage Vg is dominated by the magnitude of load impedance
Zrp. As the load increases (i.e. impedance decreases), the
load voltage Vi decreases and vice versa.

To illustrate this connection between load voltage and load
level, we simulated a transformer system with the following
initial conditions: source voltage (E;) of 1.05 per unit, line
impedance (Z ) of 0.04 per unit and load impedance (Z1.p)
of 1 per unit. As shown in Figure 2(top), load voltage doesn’t
falls until the load on the transformer exceeds 60-70% of its
capacity and beyond that voltage drops rapidly. This is not
surprising because with the increase in load, auto transformers
try to maintain a constant load voltage by changing their
tap positions. Beyond 60-70% load, tap positions cannot be
adjusted to control load voltage anymore which leads to the
fast voltage dip. This voltage dip could be sensed locally for
decentralized demand management in distribution system and
it forms the basis of nPlugs. In section V, we plot the variation
in voltage Vi measured at a household and show how it drops
during peak hours.

Though above experiment shows local voltage sensing is
a good indicator of overload in distribution system, further
investigation is required to understand how voltage levels
would be impacted by automatic voltage controllers (such
as switching capacitor banks, static and dynamic VAR (Volt
Ampere Reactive) compensators, etc) because these controllers
dynamically change source voltage and maintain a constant
load voltage. However, since such voltage controllers are
expensive, they are not installed on most of the distribution
substations in India and in many other developing countries.
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Detecting supply-demand imbalance from frequency. Con-
ventionally, the grid frequency is regarded as an indicator of
imbalance between generation and demand. During imbalance,
the output of each generator is automatically adjusted to meet
the demand. This changes the system frequency according to
the load-frequency characteristics of the generators as shown
in Fig. 2(bottom). The plot shows that when the load on
generation is higher than Pg.; (the generation needed to
support a fixed load), the frequency drops. On the other hand,
if it is less than P, the frequency rises.

Although frequency is a good indicator of imbalance, our
measurements show that frequency may not be sufficient to
identify grid load levels accurately. One possible reason for
this is that in anticipation of increased demand, the generation
is ramped up to keep the frequency close to nominal levels.
Moreover, frequency indicates grid-wide supply-demand im-
balance. On the other hand, voltage can indicate load levels
at the local transformer and feeder.

Although the power systems theory explained above is well-
known, to the best of our knowledge, none of the existing
systems learn the voltage/frequency patterns to derive load
schedules that can help reduce peak loads.

III. NPLUG HARDWARE DESIGN

Figure 3(top) shows an initial prototype of nPlug. The
hardware design is based on cost-performance trade-offs.
Figure 3(bottom) shows the hardware modules of nPlug, which
are user controls, frequency and voltage sensing circuits, relay,
real time clock and power supply.

User Interface. nPlug is equipped with buttons for entering
scheduling preferences and for overriding nPlug’s scheduling
decisions, and a 32-character (16x2) LCD.

Controller, Memory and Storage. The current design uses
a Microchip PIC24FJ128GAO010 16 bit microcontroller. This
4MIPS controller has 128KB of Program Memory, 8KB of
RAM and a SPI flash memory interface. A 4 Mb Flash
memory with SPI Interface is used to store the end user
preferences, the sensing history as well as the outputs from
the learning and scheduling modules

Voltage Sensing. Line voltage is sensed by measuring voltage
across a resistive divider (built with 1% tolerance resistors)
between phase and neutral. The divider is sized in such a way
that the dynamic range of microcontroller’s 10-bit Analog to
Digital Converter (ADC) can handle the entire input voltage
range (110 V - 350 V) Moreover, as the ADC input requires
only negligible current, low power, high value resistors are
chosen so that the current used for measurement is minimal.
Frequency Sensing. Frequency is sensed using a current-
limiting resistor directly connected from the phase to the
microcontroller input. The protection diodes in the micro-
controller I/O pin act as rectifiers limiting the voltage in
both directions converting the mains signal into a trapezoidal
waveform. Frequency is determined by counting the number of
Zero-crossing positive transitions (occur only once per cycle)
in one second. A time interval of one second is used for
computing frequency since it remains fairly constant over this
period. The measurement interval of one second is derived
from an asynchronous timer which counts at 100 microsecond
resolution. This gives an accuracy of 0.01 hertz.
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Real Time Clock (RTC). Scheduling decisions are based on
the accuracy of the clock. Since there is no network interface
for a nPlug to synchronize its clock with true time, an accurate
yet power-efficient RTC (DS1307) that is driven by a 10
ppm crystal and powered by a coin cell battery (CR 2032)
is included onboard. The battery needs to be replaced once
every three years or so.

Relay. A relay is required to turn the attached appliances ON
and OFF. This is achieved by means of commonly available
mechanical relays that can handle 30A at 230V. As the relay
must be operated only when the line voltage is close to zero,
frequency measurement interrupt whose positive edges are at
the zero-crossings is used to time the opening and closing of
the relay.

Power Supply. Different components in nPlug require dif-
ferent range power supplies. Relay, RTC and microcontroller
require 12 V, 5V and 3.3 V power supplies respectively. A low
cost primary side regulated CC/CV switch-mode regulator is
used for generating the 12 V, and 5 V and 3.3 V are generated
using LM317 regulators.

IV. NPLUG SOFTWARE COMPONENTS

Figure 3(bottom) shows the high level architecture of an
nPlug that has four software components explained in the
following sections: (i) UI manager, (ii) Data manager, (iii)
Analytics module, and (iv) Load scheduler.

A. UI Manager

The Ul Manager accepts following user-specified con-
straints: 1. Earliest start time: the earliest time at which
an appliance can be switched on; 2. Latest end time: the
latest time at which the appliance must finish running; and
3. Duration: the duration for which the appliance must be
powered. For example, a residential consumer who leaves
for work at about 8 AM may specify that her insulated
water heater must be run for 30 minutes between 4 AM
and 7 AM. In addition, the user is allowed to specify an
optional Hold time: the minimum time an appliance must
be run at a stretch when turned ON. This can be used for
devices such as washing machines, dishwashers, and storage-
based appliances (inverters/PHEVs) which may not be required
to run continuously and their operational duration could be
interrupted based on grid constraints.

B. Data Manager

The data manager works as an interface between the hard-
ware sensors and storage. nPlugs sense the grid at regular
time intervals to measure line voltage and frequency. The
sensed data is preprocessed and saved in the data storage
for analysis by the analytics module. Due to memory and
processing constraints of nPlug hardware, there are limitations
on the data volume that it can handle. Therefore the data
manager compresses the sensed data prior to storage. The data
is compressed using the Piece-wise Aggregate Approximation
(PAA) technique [8] that is simple enough to compute even
on a microcontroller. PAA compresses the sensed data by
segmenting the data sequence into fixed-length sections and
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Fig. 3.

nPlug prototype (left), system overview (right)

calculating the mean value of these sections. Given a time
series V' with n data points, V = {v1,v9,...,v,}, PAA
divides the series into the segments of length w and creates a
compressed series V' = {v'1, 09, ..., 'y} of lengthm = 2
where

w?

iXw
1

>

j=(i—1)xw+1

v = — v; Vie{l...m}

Thus PAA compresses the original data by a factor of w. PAA
attempts to preserve the similarities in the original time series
and allows data analysis on the compressed representation
instead of the original. Furthermore, PAA supports stream
processing that is beneficial in the resource-constrained en-
vironments such as nPlug. In nPlug, we use w = 300 that
provides sufficient dimensionality reduction and still retains
granular (5 minutes interval) information for further data
analysis. Figure 4 shows the voltage time series measured at
an indian household for a day at every second (blue) and the
corresponding PAA compressed time series (red).

C. Analytics

The analytics module uses the sensed voltage and frequency
data to identify (i) peak and off-peak periods and (ii) situations

of supply-demand imbalance.
1) Inferring peak and off-peak periods: nPlugs learn the

peak and off-peak periods of the power grid by analyzing
the voltage time series data collected and stored by the data
manager. This information is then used to make scheduling
decisions for the deferrable load attached to the nPlug.

The peak and off-peak periods are identified using two
steps. Firstly, the stored PAA data is transformed into a more
meaningful symbolic representation i.e. low, medium, or high
load by using an approach similar to Symbolic Aggregate
Approximation (SAX) [8]. The SAX representation is used
when the time series exhibits a Gaussian distribution. In
order to discretize/label a time-series with k alphabets, the
SAX approach defines &k — 1 break points B1, 82, ..., Br—1
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Fig. 4. Sensed voltage time series (blue), with PAA data compression (red)
and grid load pattern (green).

in the Gaussian curve producing k£ equal-sized areas under
the curve. All values within an interval (3;, 8;+1) are coded
with the symbol corresponding to the interval. However the
voltage time series is skewed and does not follow a Gaussian
distribution. Therefore we use domain knowledge and identify
lower and upper break-points using the following heuristic:
Ve = min(V’) + 0.3 x (max(V’) — min(V’)) and V,, =
min(V’)+0.7 x (max(V’) —min(V")). Thus values < V; are
classified as high load, values > V,, as low load, and values in
between as medium load level. The resulting 3-alphabet time
series is called as the grid load pattern V. Fig 4 shows the
grid load pattern in green the break points V; and V,, using
dotted lines.

Let V1, ..., V¢ denote the grid load pattern for previous c
days. Considering PAA data compression window, w = 300
(i.e. window length of 5 minutes), we get 288 data points in
grid load pattern V' for each day. In the second step, a median
grid load-pattern V for a 24-hour period is computed by
considering the grid-load pattern of previous c days, where
each entry at time ¢ is the median of previous c entries at the
same time, that is ¥; = mediani_,(v}) Vt = 1 — 288. All
time periods of high load in the median grid load pattern are
regarded as peak periods and the balance as off-peak periods.
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Fig. 5. Sensed frequency time series for a day at a household. The mean,
fu, and 2-SD thresholds, f, and f,, are indicated using the solid and dashed
lines respectively.

2) Inferring supply-demand imbalance: To ensure grid and
appliance safety, nPlugs avoid scheduling appliances during
periods of supply-demand imbalance. Unlike peak load, the
supply-demand imbalance situation does not repeat periodi-
cally every day. The imbalance is mostly due to unplanned
or sudden change in demand or supply and can be detected
by using the line frequency, as discussed in Section II. nPlug
learns the normal operating range of grid frequency by ana-
lyzing the sensed frequency data and identifies the imbalance
as an outlier. We use the 2-SD (two standard deviation) sta-
tistical test [9] to compute the thresholds of normal operating
frequency. The lower and upper operating thresholds, f, and
fu, are computed as fr = f, —2 X f, and f, = f, +2 X f5.

where f, and f, are the mean and standard deviation
of sensed frequency data. Since these can be computed in
an online manner on a microcontroller, it is not required to
store the entire frequency time series data. In order to reduce
sensitivity to the extreme outliers that can change f, and
fo» values beyond 3-SD are discarded from computations. At
every sampling time interval, nPlug senses the line frequency,
ft, and if it is less than fy, it is identified as the situation of
supply demand imbalance. Otherwise, f; is updated using f;.
Figure 5 shows the frequency time series along with thresholds

ff and fu

D. Decentralized Scheduling

This section discusses various strategies used by individual
nPlugs to schedule deferrable loads by taking into account
user specified constraints as well as grid load conditions. The
scheduling algorithms used by each nPlug contribute to load-
leveling and reduction of the aggregate peak load without any
centralized control. In this work, we focus on a ON-OFF load
control model, which allows nPlugs to defer the load offered
by appliances by turning them on or off. The model applies
to appliances such as water heaters, dish washers, washing
machines, and storage-based appliances. Other load control
models which allow nPlugs to reduce the load offered by an
appliance via power/current control are under study for future
work.

An nPlug receives the earliest start time .S¢, latest end time
FE, the operational duration d, and the hold time h of the
appliance from the end user. For loads whose operational
duration cannot be split, h = d. The time between S; and E;
is treated as divided into discrete time intervals each of width
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7. Let n = (E; — S;) /7 be the total number of available time
slots. Let H = h/7 be the number of contiguous slots that
the appliance needs to run at a stretch after being switched
on. Let D = d/7 be the total number of slots needed by the
appliance to finish work. We now discuss three scheduling
schemes that may be used by nPlugs: (i) Off-peak scheduling,
(i1)) Randomized scheduling, and (iii) GSMA Scheduling.

1) Off-peak Scheduling: This is a plain vanilla scheduling
scheme wherein an nPlug attempts to avoid peak time intervals
if possible. As discussed in section IV-C1, nPlugs learn the
peak time intervals adaptively by sensing the grid. Hence the
set of feasible start times to schedule the appliance are all
slots € [Sy, By — d] excluding the set of peak time slots,
where the device can be run for D = d/7 continuous slots.
nPlugs use a simple rule-based approach wherein the appliance
is scheduled at the earliest possible time slot that provides
minimum overlap between the operational slots and the peak
time slots.

2) Randomized Scheduling: Although Off-peak scheduling
is useful, it may cause coordinated peaking during off-peak
hours if several nPlugs use the same rule to shift loads
to common time slots. Randomized scheduling attempts to
distribute the loads uniformly across time. Each nPlug picks
a slot uniformly at random among all slots € [S;, E; — d] and
schedules the appliance at the start of the slot. Peak time slots
may also be excluded if necessary. Given sufficient number of
time slots, randomized scheduling yields a uniform demand
distribution across the off-peak slots and a commensurate
reduction in the peak load.

The performance of randomized scheduling can be seen
by comparing the loads introduced by both randomized and
optimal centralized scheduling schemes over time. Let m be
the total number of all customer appliances that need to be
scheduled between S; and F; and ¢ be the load introduced by
each appliance. An optimal scheme will schedule loads back-
to-back and introduce a constant load of y* = ﬁﬂ = mTM
on the grid during each time slot between S; and ét.

For the randomized scheme above, appliances start in slots
€ [1,n — D] uniformly at random. Let x; = 1 if the jth
appliance starts in the time slot ¢, 0 otherwise. Therefore
Pr(xz] = 1) = E[z]] = 1/(n — D). Let L; be the total load
introduced at any time slot ¢, V¢ > D.

t m t m
_ i, _ g mDL
i=t—D j=1 i=t—D j=1
The random load L; and its mean p; can be compared by
using Chernoff bound.

n
e® ¢

T o)

The above probability decreases exponentially with number of
appliances. For e.g., if m > 50, even for 6 = 0.2, it hits 0.
This implies that L; ~ p;. 114 in turn is close but slightly larger
than p1* = py(1—£). Therefore for small D /n, the difference
between randomized and optimal scheduling is small. If the
hold time H < D, then instead of generating one random
start time to schedule the load for D consecutive time slots,
the nPlug can generate D/H random numbers to schedule

For § >0, Pr(L; > (14 0)u) < (
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each block of load for H consecutive time slots. In this case
the performance of the scheme improves as H/n < D/n.

3) GSMA (Grid-sense multiple-access) Scheduling: Both
off-peak and randomized scheduling schemes above help
reduce peak loads. However they cannot respond to load
fluctuations as they are agnostic to the running capacity
of the grid. In GSMA-scheduling, which is inspired from
multiple-access protocols in packet networks, multiple nPlugs
continuously sense the grid and attempt to acquire service in
the presence of varying load. The nPlugs use voltage sensing
to determine if the load on the grid is low or high (i.e. if
spare capacity is available or not). If the sensed voltage is
sufficiently high, the appliance is switched ON, otherwise the
nPlugs back-off and attempt to schedule the appliance at a
later stage. The length of each time slot 7 is assumed to be
long enough so that if appliances are switched ON or OFF in
the previous time slot, the altered grid capacity can be sensed
in the next slot.

Algorithm 1 presents a GSMA-based probabilistic negative
linear back-off (PNLB) algorithm used by the nPlugs. In PNLB,
the contention between multiple nPlugs is resolved in two
steps. Firstly, if at time slot ¢, an nPlug wishes to sense the
grid, it uses a contention window of length w,(t) and senses
the grid at time slot £ 4+ r where r is chosen uniformly at
random € [0, w.(t) — 1]. Secondly, after sensing the current
voltage v. during a time slot, each nPlug switches on the ap-
pliance with a probability p that is proportional to the currently
available grid capacity. w.(t) and p are given by Eq.(2) where
V, and V,, are the safe operating voltage thresholds of the grid
inferred from the sensed data (section IV-C1). The first step
mimics the behavior of the optimal scheduling scheme (section
IV-D2) and the second step ensures that users react to varying
grid load whenever possible.

"ot 0 ifv.<Vp
we(t) = max {1, T}’ p= { vlc—vif ve > Vi 2)

Y .
Vv otherwise

To understand PNLB, observe that given n slots and m
appliances, the minimum number that need to use the grid
in each slot so that all finish on time is k = 75y. However
if the load on the grid is high in the first few slots and low
later, then < k can use the grid at first and > k later. When
the algorithm starts, the residual service time t, = D and
the contention window w. = n/D, so that k = m/w. nPlugs
attempt to acquire service in the first slot on average. If the grid
capacity is high so that p ~ 1, then about k£ will begin service.
If the capacity continues to remains high, about £ more will
acquire service in the next slot. If the capacity decreases, then
m’ = k(1 — p) users may fail and use a smaller contention
window w. (') = (n —t')/D, so that m’/w/, will attempt to
acquire service in a future slot ' > ¢. As time progresses, w,
gradually decreases so that the remaining users sense the grid
at a fair rate to finish on time. If an appliance has failed to
acquire service in all slots, it is switched ON before its finish
time.

When H < D, an nPlug attempts to sequentially acquire
service D/H times, each time scheduling the appliance for
H consecutive slots. After each run of appliance, its residual
service time ¢, as well as the remaining slots to acquire service
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Algorithm 1 Probabilistic Negative Linear Back-off (PNLB)

Input: S, E¢, d, h, 7, Vi, Vi, fe

. n=(E:—St)/7, D=d/T7, H=h/7,t+ 0, tr < D %
Residual time ¢, is set to D

2. ift > n—t,. goto step 15

schedule the appliance

We + "t

r < randint(0, w. — 1)

t < wait(r, t)

(ve, fe) < sense

if (ve <V;) then
p<+0

9: else if (v, > V,,) then

10: p+1

11: else

12: p < (ve = Vo)/(Vu — Vi)

13: end if

14: if rand(0,1) < p and f. > f; then

15:  switch(ON) % acquire service with probability p

16: twait < min(H,t,)

17:  t + safewait(twqit,t)

18: tr < tr — twait

19: switch(OFF);

20:  if ¢, > 0 then

% 1If enough time available to
% set the contention window

% wait for r time slots
% sense the grid voltage and frequency

B AN AN

% switch ON for t,q4: time slots
% update residual time ¢,

21: goto step 2

22: else

23: exit

24: end if

25: else

26: t < wait(1,t); goto step 2
27: end if

again i.e. (n—t), both decrease by H. The contention window
w, is updated accordingly so that the nPlug senses the grid at
the fair rate to finish on time.

After an appliance is switched ON, nPlugs switch to “safe-

wait” state wherein they sense the grid voltage and frequency
regularly so that they can switch OFF the appliance if necessary
to ensure grid reliability. This “’safewait” period ensures that
nPlugs can back-off if the grid gets overloaded after the
appliance is turned ON.
Fairness and Aggressiveness. In PNLB, the number of nPlugs
that sense the grid to acquire service at each time slot is set to
mimic the centralized scheduling scheme (section IV-D2) to
achieve optimal load leveling. The rate of sensing is controlled
by the contention window w,(t) which is a function of the
residual service time and remaining time slots available until
finish time. Therefore an nPlug that requires more service or
has fewer time slots remaining senses more often than an
nPlug that may have either less residual service time or more
available time slots. In this model, each nPlug’s waiting time to
complete service varies and is also affected by the randomness
and length of the operational durations involved. In section V,
we show experimentally that our model of contention window
leads to similar waiting times on average as the operational
duration or hold times decrease.

4) Rebound Effects. : Rescheduling customer loads over
time may lead to rebound effects wherein existing peaks may
grow larger and reoccur at alternate times. We now argue that
nplugs do not lead to new increased peaks in the presence
of background loads (which may not controlled). Nplugs
attempt to schedule loads during off-peak slots between the
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start and end times specified by customers. Typically this
duration will include the original times of appliance use.
Randomized scheduling essentially adds an additional layer
of load uniformly across all off-peak slots between these start
and end times. Since the peak slots are excluded and loads
are uniformly spread out, this is unlikely to results in new
and larger peaks.

PNLB senses the grid as well as controls the rate at which
appliances acquire service. Therefore it is sensitive to back-
ground load and attempts to distribute load between the start
and end times such that valleys of low background load are
filled and the total load remains uniformly below the overload
threshold. However since appliances have a hard deadline, a
peak may occur when a partial set of appliances with similar
end times may have missed a chance to acquire service and are
therefore scheduled close to their end times. However, such a
peak is likely to be much smaller compared to a peak formed
by all the appliances being scheduled together.

5) General GSMA scheduling and its performance: PNLB
can be regarded as variant of “GSMA/OA(overload avoidance)”
along with specified service deadlines, i.e. nPlugs acquire
service at a certain rate in order to avoid overload when-
ever possible, as well as try to finish on time. Also during
safewait state, they relinquish service if necessary to ensure
grid reliability. However nPlugs do not proactively use any
overload-detection(OD) protocol to actively drop-off in case
they exceed capacity after acquiring service. The capacity can
exceed even with OA in place due to the following reasons:
Firstly, when nPlugs attempt to acquire service with a certain
probability, the random number of these that actually acquire
service may be more than the average. Secondly, since it may
not be possible for nPlugs to determine in advance the voltage
drop that will result from their appliance, the cumulative load
introduced by nPlugs that actually acquire service may exceed
capacity of the grid. The benefit of an OD-protocol is that it
can allow only some nPlugs to drop-off instead of all, to reach
the operating capacity.

In order to understand the performance of PNLB and general
GSMA-based variants for demand dispatch, we now relax the
requirement that appliances need to be serviced before a
deadline and study the asymptotic performance of two best-
effort GSMA variants: (i) p;-persistent GSMA, and (i) (pj,
pe)-persistent GSMA. We assume that the system has a total
capacity to serve about k nPlugs/appliances simultaneously
and a total of m(¢) nPlugs contend for service at any time
t. We assume that nPlugs can sense the running capacity of
the system c(t), that is the number of nPlugs currently being
serviced.

The p;-persistent GSMA follows OA as in PNLB. At each
time slot, after sensing that the system has free space, unserved
nPlugs attempt to acquire service with probability p;. If
successful, they get served for a fixed number of slots and
leave the system. The (p;,pe)-persistent GSMA follows both
OA and OD. As before, at each time slot, after sensing that
the system has free space, unserved nPlugs attempt to acquire
service with probability p;. If successful however, they enter
a ‘temp’ state and begin to receive service. At each time slot,
the ‘temp’ nPlugs sense the grid load to check if the current
capacity is < k. If so, they all move to ‘joined’ state where
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Fig. 6.  Asymptotic performance of pj-persistent and (p;,p¢)-persistent
schemes for demand dispatch

they continue to receive service until finished. If not, each
‘temp’ nPlug leaves the system with probability p,. Note that
both protocols do not prioritize nPlugs in any manner.

It is straightforward to see that at any time ¢, the optimal

value of p;(t) = max{0,[k — c(t)]/m(t)}. Similarly, the
optimal leaving probability for ‘temp’ nPlugs is p,(t) =
max{0, [c(t) — k]/ce(t)}, where c¢(t) denotes the number of
‘temp’ nPlugs in the system. Figure 6 shows the asymptotic
performance of both the protocols as a function of offered
load, with optimal values of p; and p,. The performance is
measured using two metrics: (i) Throughput which gives the
ratio of capacity used for service excluding any excess, over
the capacity used by the optimal scheme and (ii) Overload
which gives the ratio of excess capacity used over the capacity
used by the optimal scheme. We see that the asymptotic
throughput of both the protocols reaches close to 90%. As
expected, the p;-persistent protocol yields a slightly larger
overload and hence a slightly better throughput. The plot
shows that by choosing right values p; and p,, the performance
of decentralized scheduling schemes such as PNLB can be
made close to that of centralized ones. Future work will
modify the persistent GSMA protocols above into those that
use a varying contention window and infer the optimal values
of p; and p, automatically.
Differences with networking protocols The above protocols
differ from CSMA protocols used by the MAC-layer to share a
communication channel in the sense that collisions could be
tolerated to a certain extent. In networks, if more than one
node attempts to acquire service, all the nodes fail due to a
collision. However for a grid that can serve about k appliances,
if k4 9 acquire service, then some of the § users can drop-off
while the others can continue running.

V. EVALUATION

In this section, we present the experimental evaluation of the
nPlug algorithms. For this evaluation, we used data from an
ongoing project [10], where plug-level energy monitors have
been instrumented in a few homes in Bangalore and Chennai
in India in order to collect the consumption profiles of house-
hold appliances. In addition to reporting the energy usage,
these monitors report the line voltage and frequency every
second. This time series is used by the nPlug analytics module
to infer peak periods and detect supply-demand imbalance.
We use voltage, frequency, and energy usage time series data
collected in 2011 and 2012 for our experiments.
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Fig. 7. (a) Voltage time series for 7 days at an Indian household and (b)

the inferred grid load pattern

A. Inferring grid load using local sensing

Figure 7(a) plots the raw voltage time series corresponding
to seven days (18th-25th Feb 2011), as sensed by a smart plug
at one of the sockets in a household in Bangalore, India. The
plot shows that (i) the line voltage varies over a wide range
from 218 — 250V and (ii) the voltage time series exhibits a
similar trend every day with some differences. The voltage
remains high at night when the load on the grid is low. It
decreases after about 6AM in the morning when appliances
are generally switched on. During the day it decreases and
fluctuates as loads may have increased or decreased, mostly
remaining within a range. It decreases further in the evenings
after about 6PM when people generally return from work and
electricity is used for lighting and other appliances. Thus the
plot indicates that the times of high and low local voltage
match well with the regular times of low and high load on the
grid respectively.

Figure 7(b) plots the corresponding median grid load pattern
that is inferred by the analytics module after the voltage time
series is compressed using PAA (sections IV-B and IV-C1).
The voltage values between V, = 228V and V,, = 238V are
classified as medium load, while those below and above are
classified as high and low load respectively. The time period
from 6:45 to 8:30PM is classified as one of the peak periods
while 10:30PM to 6AM is classified as an off-peak period.

In order to understand how the local voltage measured at
a household in Bangalore varies with the aggregate grid load,
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we analyzed the power data from KPTCL? that publishes the
aggregate grid load in the state of Karnataka (where Bangalore
is located). Figure 8(a) plots the average hourly local voltage
along with the average hourly grid load for one of the sample
days. We see that the local voltage is negatively correlated
with the grid load i.e. as the hourly load rises, the hourly
voltage drops. The Pearson’s correlation coefficient between
these two time series is p = —0.8197. We computed the
correlation coefficient for all 7 days of voltage and grid data.
The correlation coefficient varies from —0.7654 to —0.8993
with an average of —0.8197. The plots show that nPlugs could
use local voltage as a load indicator to schedule appliances at
coarser time scales using off-peak or randomized scheduling
and contribute to peak load reduction.

When nPlugs use GSMA based scheduling approaches, they
sense the local voltage continuously and schedule appliances
under varying load conditions. In order to understand how
loads introduced by different households affect the locally
sensed voltage, we analyze the load and voltage measurements
on same and different phases from neighboring households
which are powered by the same transformer in Chennai, India.

We analyze the effect of AC (air-conditioner) loads as these
are heavy and therefore contribute to a noticeable change in
voltage. In Chennai, transformers and households are generally
3-phase wherein different sockets in a household may be on
different phases. Fig. 8(b) shows the instantaneous load (watts)
and voltage measured at the same socket that powers the AC.
We see a clear inverse relationship between load and voltage.
After each compressor cycle, when the load drops, the voltage
rises. The voltage measured at the socket is also affected
by background loads which may have been running in other
homes on the same phase.

Fig 8(c) shows how the voltage varies on three different
sockets in a household when socket 1 powers an AC. The
blue curve shows the voltage on socket 1, while the red curve
shows the voltage on socket 2(without load) on the same phase
in the household. Although the voltage on sockets 1 and 2
vary in the same manner, they differ by a small amount (~ 2
volts) when the AC load is high. When the load reduces, both
voltages are almost the same. Thus the proximity of load to
the sensing point affects the measured voltage as there may
be some losses on the wiring within the household as well.
Lastly, the grey curve shows the voltage on a 3rd socket on a
different phase that powers a refrigerator. We do not observe
any noticeable effects of AC load on the voltage at socket 3
or the effect of refrigerator load on the voltages at sockets 1
and 2. Thus loads on different phases may not impact each
other’s voltage significantly.

Fig 8(d) shows how the voltage varies on three different
sockets on the same phase when the first socket powers an
AC, the 2nd socket is at the same household (without load)
and the third socket is at a neighboring household(without
load). Before the AC is switched on, all three voltages are
approximately the same. As the AC’s compressor cycle begins,
all voltages drop and all voltages decrease as load increases.
When the load rises, although the voltages vary together, there
are minor differences between the voltages values (~ 2 —

Zhttp://110.234.115.69:8282/LoadCurveUpload/lcdownloadFl.asp
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3 volts). We also see a short event when all three voltages
increase and drop (marked by 3rd and 4th grey lines from
left), which is not associated with the ACload. This may have
been caused by a background loads on the same phase.

In conclusion, the locally sensed voltage variations are a
function of loads at different locations in the distribution grid
and their proximity to the sensing point. In general, the local
voltage may remain low when the phase, the local transformer,
the substation, or other grid assets may be overloaded.

B. Inferring supply-demand imbalance

The grid frequency decreases when the demand is higher
than supply and vice versa. The frequency is continuously
controlled by the grid operator by dispatching generators.
However, under critical conditions, when there is a shortage
of generation, nPlugs could help by not scheduling more
load. We see that the frequency measurements vary in a very
narrow range and exhibit a Gaussian-like distribution. About
95% of values lie within the 2-SD thresholds and the balance
are classified as outliers by the analytics module. The 2-SD
thresholds inferred from the data are close to the standard
operating thresholds in India which are 49.4Hz and 50.1Hz.
Therefore the frequency measurements could be used to detect
imbalance conditions.

We observe that frequency shows low correlation with load
and the average correlation over 7 days is —0.17. Frequency
varies in very short time scales with load and may not be a
good indicator of load at coarser time scales.

C. Decentralized Scheduling

In this section, we present the results of Monte-Carlo simu-
lations conducted to evaluate the performance of decentralized
scheduling schemes discussed in section IV-D: (a) Random-
ized scheduling and (b) GSMA-based PNLB. We compare the
performance of these schemes against no scheduling (i.e. no
nPlugs) and optimal centralized scheduling using direct load
control. The performance is measured using three metrics:
Peak to Average Ratio, % Throughput, and % Over-utilization
(defined in section IV-D5).

We consider the following deferrable appliances in our
experiments, which are commonly used in cities across India:
(a) water heater (2.5KW) (b) washing machine (0.8KW) (c)
water pump (2.5KW, used to pump up supplied or ground
water) (d) Inverter (0.7 KW, used for power backup). In
addition we consider (e) PHEV loads (1IKW - 1.7KW) that
may appear in future. These appliances are scheduled within
the user specified time periods by randomized scheduling and
PNLB to reduce peak loads.

We present the results for three scenarios documented in
Table I: (1) Single peak from water heaters (2) Single peak
from water heater plus varying background load (3) Multiple
peaks from different appliances plus varying background load.
(4) Multiple peaks from with varying background load as
well as varying generation capacity with PHEV loads. In each
case, the grid threshold capacity is set large enough so that
the optimal centralized scheme can schedule the appliances
without violating the threshold capacity. In addition the grid is
assumed to have a spare generation capacity that is 50% of the
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threshold capacity. The throughput and overload of schemes
is measured with respect to the threshold capacity.

In order to establish the correspondence between voltage
and grid capacity, we assume that the grid voltage varies
between V,.;n = 225V and V.. = 255V with a safe
operating region from V;, = 228 to V,, = 249V. The voltage
of the grid at any time ¢ is computed as

’U(t) = szn + (1 - ﬂ) X (Vmam -
Pm.am
where P(t) is the load in the grid at time ¢ and P, is the
threshold capacity. Note that the above method to compute
voltage from grid load may not be completely realistic. The
voltage change in a household is a function of both load in
the household as well as the grid and is hard to estimate.
Moreover it depends on several factors such as the distance
of the household from the transformer and so on. Therefore
our experiments evaluate the performance of scheduling algo-
rithms assuming the simplified model of grid load mentioned
in (3). For GSMA-based PNLB, the time slot length 7, that is
used to sense the grid at regular intervals, is set to 1min.

Scenario 1 The first scenario is designed to capture
common domestic demand patterns observed in major Indian
cities during the early morning hours. Since most households
switch on their heater for about 30 min, this demand induces a
peak during morning hours [11], [12], [13]. Figure 9(a) shows
such a peak when 100 water heaters are switched on between
6:15 and 7AM. To reschedule this load, note that users are
generally insensitive to the exact time at which the heaters
are switched on as long as hot water is available by a certain
time. Also since water heaters have insulation, water once
heated remains useable for a few hours. Therefore we assume
that users specify 4:00 AM as the earliest start time, 7:00 AM
as the latest end time, and duration as 30min. For this scenario,
the threshold capacity P,,,, is set to 42.5KW since this is the
minimum capacity needed to operate 100 water heaters for
half an hour each, so that all the heaters finish their operation
within 3 hours. Figure 9(b) and (c) show the results for one
sample run of randomized scheduling and PNLB. The average
and standard deviations for 20 runs are shown in Table II.

We see that randomized scheduling provides a good dis-
tribution of the load and as expected some overload. PNLB
mimics the behavior of the optimal centralized scheme but
with a small peak towards the end. This occurs since appli-
ances that were not scheduled earlier are switched on towards
the end so that all appliances finish on time. The throughput of
PNLB remains above 90% with low overload. Thus the peak
load reduces significantly by using nPlugs with randomized
scheduling or PNLB.

Scenario 2 Having established the benefits of decentralized
scheduling, we now evaluate the performance of scheduling
schemes in the presence of varying background load. The
background load corresponds to the domestic loads that are
either non-deferrable or ones that do not use nPlugs. This load
is assumed to have a mean amplitude of 50% of the peak load.

Figure 9(d)-(f) shows the results when water heaters are
scheduled by nPlugs in the presence of varying background
load. Again, we observe that randomized scheduling dis-
tributes the load uniformly over time. However it does not
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TABLE I
SUMMARY OF EXPERIMENTAL SCENARIOS (THE USER PREFERENCES ARE SPECIFIED AS [EARLIEST START TIME, LATEST END TIME, OPERATIONAL
DURATION(MIN), <HOLD TIME> (MIN)])

Scenario Appliance types Number of ap- | Additional vari- | User Preferences

No. pliances able load

1 ‘Water Heaters 100 No [4:00, 7:00, 30]

2 Water Heaters 100 Yes [4:00, 7:00, 30]

3 Water Heaters, Water Pumps, 200 Yes [4:00, 7:00, 30], [5:00, 7:00, 20]
Washing Machines, Inverters [6:00, 8:15, 40], [6:40, 8:15, 25]

4 Four types of Storage 200 Yes [20:00,6:00,420,30],[20:00,4:00,400,20]
Appliances (PHEVS, Inverters etc.) [20:00,6:00,480,15],[20:00,4:40,360,25]

TABLE II

SUMMARY OF MONTE-CARLO SIMULATIONS FOR DIFFERENT DECENTRALIZED SCHEDULING ALGORITHMS BASED ON THREE METRICS: Peak to Average
Ratio, % Throughput, AND % Over-utilization above threshold generation capacity).

Scenario Peak to Average Ratio % Throughput % Over-utilization
No. w/o Random PNLB w/o Random PNLB w/o Random PNLB
nPlug nPlug nPlug
1 1.78+0.1 | 1.48£0.2 1.41+0.1 | 23.9+1.7 | 82.3+6.7 93.2+2.1 | 62.2+23 | 13.1pml.1| 4.1+0.8
1.79+0.2 | 1.51£0.1 1.33+0.1 | 782+1.9 | 87.3+£3.4 94.1+2.4 | 19.7£1.6 | 53£1.2 2.1+0.7
3 1.78+0.1 | 1.52+0.1 1.29+0.1 | 80.1+1.8 | 88.2+3.8 94.3+2.3 | 12.4+2.6 | 43£1.2 1.2+0.8
TABLE III

PERFORMANCE OF PNLB AND PNLB WITH PREEMPTION (PNLB+) FOR STORAGE-BASED APPLIANCES WITH LONG SERVICE TIMES WITH VARYING LOAD
AND VARIABLE GENERATION, BASED ON THREE METRICS: Peak To Average Ratio, % Throughput AND % Over-utilization.

Scenario Peak to Average Ratio % Throughput % Over-utilization
No. w/o nPlug PNLB PNLB+ w/o nPlug PNLB PNLB+ w/o nPlug PNLB PNLB+
4 1.5940.03 | 1.56£0.16 | 1.31+0.11 | 83.8£2.1 | 84.1£1.7 | 92.3+1.6 | 10.2+0.8 | 9.4+1.3 | 2.240.7

efficiently use available grid capacity since it does not sense
the running load in the grid. On the other hand PNLB that uses
a GSMA-approach, senses the running load and therefore uses
the varying capacity more efficiently, thus yielding a better

throughput and lower overload.

Scenario 3 The third scenario is designed to mimic the de-
mand pattern in metropolitan cities where the use of multiple
high power electrical appliances is more common [11]. Figure
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Fig. 9. Performance of different scheduling schemes: rows top to bottom: Scenarios 1 to 3. Columns left to right: Base case without nPlug, Randomized

scheduling, and PNLB. (a)-(c): Scheduling of of 100 water heaters using nPlug. (e)-(f): Scheduling 100 water heaters in the presence of varying background
load. (h)-(i): Scheduling 200 appliances of different types of appliances in the presence of varying background load. Randomized scheduling and PNLB

contribute to peak load reduction and load-leveling.

9(g) shows a demand pattern that was constructed by con-
sidering appliance ratings and commonly occurring appliance
mix in metropolitan households where multiple appliances are
switched on simultaneously resulting in multiple peaks.

For scheduling using nPlugs, different appliances are as-
sumed to have overlapping start and end times and different
operational durations as shown in Table 1. Figure 9(h)-(i) plot
the results for one sample run of randomized scheduling and
PNLB. Table II presents the mean and standard deviations over
20 runs. We see that both schemes contribute to peak load
reduction and load-leveling even when different appliances
with different user constraints are attached to nPlugs. PNLB
allows nPlugs attached to different appliances to use the
available capacity efficiently even as appliances are switched
on and off and the grid load varies.

Scenario 4 The fourth scenario is designed to mimic future
demand and supply patterns in the presence of storage based
loads such as PHEVs/inverters, variable generation (e.g. wind,
solar), and variable background loads. Figure 10(a) shows
a demand pattern that was constructed by considering four
different storage appliances of varying service durations in
the presence of varying load and variable generation. Since the
load is not responsive to grid conditions, we observe multiple

overload peaks. Figure 10(b) shows the results when the
storage appliances are controlled by nPlugs without preemp-
tion i.e. loads once scheduled cannot be interrupted. We see
that situations of overload reduce. However since appliances
have long operational duration, they become unresponsive
after being scheduled and a few overload peaks still occur.
Figure 10(c) shows the results when storage appliances are
scheduled by PNLB with preemption by specifying the hold
times (referred as PNLB+). We observe that all appliances are
serviced by nPlugs without overloading the grid. Table III
shows the performance as measured using peak to average
ratio, throughput, and overload metrics.

Fairness In PNLB, the rate at which nPlugs sense the grid
varies with the residual service time and the time remaining to
finish service. In order to determine if the algorithm is fair to
different users, we conduct experiments to estimate the waiting
time before each appliance is serviced. We consider a scenario
with long operational duration and use PNLB with preemption.
We consider 200 appliances, each of 1kW powered by a grid of
capacity 100 kW i.e the grid can support half the appliances at
any point in time. In a fair scheduling scheme, each appliance
stays on and off the grid for alternate durations of hold time,
thus waiting for one hold time before each service. Table IV
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Fig. 10. Performance of PNLB with storage-based loads of long charging
duration such as PHEVs/Inverters: (a) Base case without nPlug, (b) PNLB
without preemption and (c) PNLB with preemption where loads can be
interrupted by specifying hold times.

shows the average waiting times of appliances along their
standard deviations as a function of hold time duration. We
observe that as hold times reduce, the deviation from average
waiting time reduces and the waiting times approach the hold
times implying fairness.

VI. RELATED WORK

Demand Side Management or Demand Response(DR) [14]
is essentially a mechanism for inducing consumers to alter

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 7, JULY 2013

TABLE IV
AVERAGE WAITING TIME FOR DIFFERENT HOLD TIMES

Hold Time | Average Waiting Time
20 18.72 £ 0.79
10 9.76 £0.18
5 4.96 £0.03
1 0.9986+ ~ 0

their consumption patterns in response to changes in supply
so that available capacity may be shared efficiently. These
demand changes are usually induced through variable pricing,
financial (dis)incentives, and explicit or direct load control.
Although these are more popular in the power sector, they are
applied in various sectors including transportation (e.g. con-
gestion pricing) as well. Several DSM systems and programs
have been proposed for reducing the peak power loads and
some of these are even operational today. In this section, we
review devices used for both the centralized and decentralized
demand management schemes.

One of the earliest proposed grid-friendly appliances is
Frequency Adaptive, Power-energy Re-scheduler (FAPER)
invented by Schweppe [15]. FAPER senses grid frequency and
reschedules the power flow to a load on the basis of deviations
in frequency. As explained previously, frequency alone may
not be sufficient to sense peak loads. Moreover, FAPER does
not consider consumer’s preferences while scheduling loads.
For example, on a particular day, if the load on the grid is
high during a time period, consumers may not be able to run
their appliances during this period if only the grid conditions
are considered. Responsive Load Controller from RLtec [16]
uses an approach identical to that of FAPER and has similar
shortcomings. Another example is the Grid-Friendly controller
from PNNL [17], that can be installed in refrigerators, air
conditioners, or other household appliances. It monitors the
power grid and turns appliances off for a few seconds to
minutes in response to grid overload. RLtec and Grid-Friendly
devices are not standalone devices and must be incorporated
into the appliances. Although new appliances could be fitted
with such controllers, it may not be possible to retrofit millions
of appliances already in use. Moreover, these controllers react
only to grid conditions and do not support a mechanism
to proactively schedule appliances to reduce load or as per
consumer convenience. Nest [18] is a thermostat management
system that learns the preferred temperature settings of the
consumer and maintains the room temperature accordingly.
But, Nest can manage only heating and cooling loads. It is
not a appliance-level schedule management device. Peaksaver
[19] is a smart thermostat that allows utilities to cycle central
air conditioners and reduce their run time - typically during
hot weekdays of summer - when the load on the grid is usually
high. Peaksaver requires centralized control and is designed to
work only with air conditioners and not with other loads that
can be time shifted. Bluepods from Voltalis[20] are devices
that plug into home electrical panels and are controlled over
the web. During peak demand, a signal is sent to Bluepods
to turn off air conditioners. Williamson et al. have proposed
Distributed Intelligent Load Controllers (DILC) [21] to miti-
gate the power imbalance due to intermittent renewable energy
sources. Similarly, Barker et al have proposed SmartCap [22]
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for reducing residential electricity demand during peak hours.
SmartCap is based on a home gateway that receives infor-
mation from multiple potential sources, including real-time
electricity prices and demand-response signals from the grid,
generation data from on-site renewables, and consumption
data from each household load. These information sources
inform the gateway’s load scheduling policy. Bluepod, DILC
and SmartCap are solutions that depend on external data
sources and require network infrastructure to communicate
with those sources. [23] has proposed a distributed control
mechanism that still requires network communication, even
though minimal, for managing residential loads.

Unlike above systems, nPlug provides an inexpensive and
autonomous load scheduling mechanism that can minimize
peak loads while respecting consumers preferences.

VII. CONCLUSIONS AND FUTURE WORK

There has been an increasing interest in DSM strategies to
address the peak load problems faced by utilities all over the
world. In this work, we present nPlug, an autonomous load
controller that uses local sensing and control techniques to
alleviate peak load on power grids. It uses voltage sensing to
identify peak and off-peak periods of the grid. nPlugs time-
shift the attached loads to off-peak periods while respecting
the end user preferences and grid load conditions. They do not
require any communication infrastructure nor any changes to
the appliance or grid. They are simple, affordable, and scalable
and could be used in developing as well as developed coun-
tries. We describe the high level architecture and the design
details of nPlugs. Using preliminary voltage measurements
collected at a household, we showed that line voltage is a
good indicator of grid load and presented simple analytics
techniques to infer peak and off-peak periods from voltage
time series. We presented novel decentralized scheduling algo-
rithms - randomized scheduling and GSMA-based PNLB+ that
is inspired by CSMA protocols in networks. Our experimental
results show that both these algorithms could be used by
nPlugs to achieve significant peak load reduction and load-
leveling in the presence of varying grid load. However, we
need to study the impact of battery lifetimes with varying
charging/discharging cycles.

nPlug has applications in developed nations as well. Energy
demand is expected to increase in future, especially with the
introduction of heavier loads such as electric vehicles (EVs).
In such a scenario, construction of new power plants and
resizing grid assets may be deferred with the help of nPlugs
that facilitate demand response. For example, nPlugs may be
used to alleviate load on the local transformer when there are
a large number of EVs in a service area. The resulting demand
reduction can help reduce the dependence on expensive power
during peak periods. Furthermore in sparsely populated areas
such as the country side where the cost of communication
infrastructure per customer is high, nPlugs can help provide a
less expensive alternative to achieve demand response.

We are considering several future extensions to our work.
Firstly, we plan to study how sensing additional power-system
parameters such as power factor could be useful in improving
the observability of grid conditions. Second, we will study
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how nPlugs can be used to manage reducible loads such as Air
Conditioners whose power consumption can be reduced during
the peak hours. Third, we will analyze how nPlugs can be
incorporated into appliances so that their power consumption
can be finely modulated without simply turning them ON/OFF.
A few questions also remain unanswered. Even though
nPlugs are inexpensive, the economic incentives for end users
to use them is not clear. It might require legislative changes to
encourage appliance manufacturers to embed nPlug-like func-
tionality into deferrable loads. If incorporated, appliances can
be both grid and user friendly with minimal user intervention.
If a large number of nPlugs are deployed in the field, the load
curves used by distribution companies may also need to be
altered and that in turn could alter the generation portfolio.
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